Однако она усложняется тем, что нет общепринятых стандартов, по которым можно было бы измерять качес...View MoreОднако она усложняется тем, что нет общепринятых стандартов, по которым можно было бы измерять качество, и тем, что для каждого языка нужно собирать новые данные. Например, для обучения YaLM использовали русскоязычную «Википедию», тексты из книг, поэзии и прозы, а также публикации в соцсети Twitter, которые предварительно очистили от бессмысленных фраз. «Языковые модели часто используются как „болталки“, с которыми пытаются вести беседы, спрашивают у них мнение, ожидают, что программа подстроится под индивидуальные особенности и интересы человека. С этой точки зрения программы, конечно, стараются развивать, но ждать от тех же голосовых помощников правильной реакции на специфические вопросы не стоит. Вместо прямого перевода модель формирует промежуточный уровень абстрактных концепций — своеобразный «язык мышления». В средних слоях трансформера действительно наблюдается преобладание английского языка, но это скорее следствие доминирования английского в обучающих данных, чем необходимый этап обработки информации.<br/> <a href="https://wikimapia.org/external_link?url=https://auslander.expert/">https://wikimapia.org/external_link?url=https://auslander.expert/</a> Hugging Face находится на пути к укреплению своего статуса ведущего центра для больших языковых моделей (LLM), опережая традиционные сообщества ИИ по темпам роста и вовлеченности. Платформа Hugging <a href="https://artificial-intelligence.blog.gov.uk ">https://artificial-intelligence.blog.gov.uk </a> Face, известная как "Хаб", представляет собой огромное хранилище моделей, токенизаторов, наборов данных и демонстрационных приложений (пространств), доступных в виде ресурсов с открытым исходным кодом. LLaMA, ориентированная на открытые методы, предоставляет компактные, но мощные модели, которые делают исследования ИИ высшего уровня доступными для широкого круга пользователей, включая тех, кто имеет ограниченные вычислительные возможности.<br/>Их способность понимать контекст и нюансы языка делает их очень универсальными. Эта адаптивность привела к их внедрению во многих областях, включая обслуживание клиентов, создание контента и более специализированные области, такие как управление ИТ-услугами (ITSM). Большая языковая модель (LLM)- это одно из приложений искусственного интеллекта, служащее основой для решения задач компьютерной обработки естественного языка.<br/><ul><li>Кроме того, GPT-4 демонстрирует превосходное понимание и генерацию естественного языка (NLU / NLG), что делает его применимым в таких специализированных областях, как юридический анализ, продвинутая техническая поддержка и творческое письмо.</li><li>O1 Pro – это расширение версии O1, разработанное для решения самых сложных задач.</li><li>Невозможно говорить о какой-то единой структуре — в разные годы применяли разные подходы.</li><li>Например, можно создавать с помощью алгоритмов реалистичные голосовые образы, что позволит генерировать аудиоконтент без участия людей.</li><li>Или термин «единорог», обозначающий компанию, достигшую оценки в 1 млрд долларов в течение десяти лет с момента основания (его добавили в тематическую карту карьериста).</li></ul><br/>Одну и ту же модель можно использовать и для генерации кода, и для имитации живого диалога или придумывания историй. Первые языковые модели появились еще в 1990-х годах и могли работать только над лексическим переводом, выравниванием порядка слов в предложениях и другими относительно несложными задачами. Работа над полноценными LLM началась в начале 2010-х годов, когда нейронные сети хорошо зарекомендовали себя в работе с изображениями. В настоящее время интерес представляют новые техники управления поведением больших языковых моделей с целью получения желаемого пользователем результата без обновления самих моделей – так называемый «промт инжиниринг». Эта библиотека, использующая различные архитектуры LLM, стала одним из самых быстрорастущих проектов с открытым исходным кодом в этой области. Hugging Face, часто называемый GitHub-ом для больших языковых моделей (LLM), способствует созданию открытой экосистемы для LLM.<br/>Claude представлена в марте 2023 года и ознаменовала собой выход Anthropic на рынок общедоступных моделей ИИ, направленных на повышение безопасности и этичности ИИ. Claude появился как ответ на непредсказуемые, ненадежные и непрозрачные проблемы больших систем ИИ. Альтман делает акцент на мультимодальности, объединяющей речь, изображения и, в конечном счете, видео, чтобы удовлетворить растущий спрос на универсальное взаимодействие ИИ.<br/>Такой подход знаменует собой отход от традиционных моделей, подчеркивая универсальность и адаптивность базовых в различных направлениях использования. В стремительно меняющемся ландшафте искусственного интеллекта термин "базовая модель" (Foundation Model, FM) представляет собой смену парадигмы в разработке систем ИИ. Модели способны переводить тексты с одного языка на другой, сохраняя смысл и стиль исходного сообщения. Прорыв в создании БЯМ произошел с появлением архитектуры трансформеров, представленной в работе «Attention is All You Need» в 2017 году. Трансформеры заменили рекуррентные нейронные сети (RNN) и свёртки (CNN), предложив более эффективный способ обработки последовательностей.<br/><h2>Основные особенности и возможности</h2><br/>Акции и новости, а также годные статьи о хостинге, маркетинге, облачным технологиям, нейронным сетям и всякому там искусственному интеллекту.<br/>Помимо прочего, в базы данных вошли речевые клише, стереотипы, мемы, цитаты, фразеологизмы, пословицы и поговорки. Например, выражение «быть в ресурсе», которое часто ассоциируется с духовными практиками. Или термин «единорог», обозначающий компанию, достигшую оценки в 1 млрд долларов в течение десяти лет с момента основания (его добавили в тематическую карту карьериста). По мнению младшего научного сотрудника Центра междисциплинарных исследований МФТИ Ксении Клоковой, сегодня люди проявляют слишком много доверия по отношению к нейросетям.<br/>GPT-3 построен на архитектуре трансформера (transformer) - модели глубокого обучения, представленной в статье "Attention is All You Need" ("Внимание - это все, что вам нужно" - перевод на Хабре, ч.1 и ч.2 ) Васвани и др. Стэнфордский центр исследований базовых моделей (CRFM) раскрывает эту концепцию глубже, описывая базовые модели как краеугольный камень новой парадигмы построения систем ИИ. Обучение одной модели на огромном массиве данных может быть адаптировано к огромному количеству приложений, демонстрируя ошеломляющий скачок в способности ИИ понимать мир и взаимодействовать с ним подобно человеку. Разберемся, что это такое, как они развивались и чем отличаются друг от друга. Кроме того, необходимы продуманные алгоритмы оптимизации и стратегии обучения для эффективного использования ресурсов.<br/><h3>LLAMA</h3><br/>O1 Pro – это расширение версии O1, разработанное для решения самых сложных задач. Версия PRO использует больше вычислительных ресурсов, что обеспечивает более точные и надежные результаты. Она значительно превосходит обычную O1 и O1-preview в таких областях, как анализ данных, программирование и обработка документов, демонстрируя более высокие результаты в бенчмарках по математике, науке и кодированию. Особое значение имеет процесс токенизации – разбиения текста на минимальные единицы для обработки. Эффективная токенизация позволяет нейросети лучше понимать структуру языка и экономнее использовать вычислительные ресурсы.<br/><br/>На эту проблему обратили внимание сотрудники Центра междисциплинарных исследований МФТИ вместе со специалистами в области культурологии и лингвистики. Ученые предложили новый метод, позволяющий проанализировать встроенность больших языковых моделей в национальную культуру. Презентация проекта под названием «Культурные замеры больших языковых моделей» состоялась на площадке института.<br/>Но даже самым популярным языковым моделям не чужды фактические ошибки и галлюцинации (подробнее об этом явлении мы рассказывали здесь). Работа с LLM предполагает обработку больших массивов данных, что требует соблюдения законов о защите данных, о которых я недавно писал (например, ФЗ-152). <a href="https://myspace.com/serp-genius">https://myspace.com/serp-genius</a> Эти навыки проще всего освоить в вузах, где учебные программы помогают последовательно изучать компьютерные науки, математику и машинное обучение.
About Me
Однако она усложняется тем, что нет общепринятых стандартов, по которым можно было бы измерять качес...View More